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Abstract. Tunnelling of a single quantum spin is studied in the limit of large spin quantum 
number S. The problem is mapped onto a parficle problem on the positive half-line, with 
a Hamiltonian which is invariant under inversion x + I/x. Not only the ground-state energy 
but also all the other energy levels and corresponding level splittings (if any) are computed 
by using the conventional W K B  methods for the particle problem and an excellent agreement 
with numerical data is found. 

1. Introduction 

In two recent papers (van Hemmen and Suto 1986a, b) a WKB formalism was presented 
to describe the quantum dynamics, including tunnelling, of single spin with large spin 
quantum number S. A typical example is provided by the Schrodinger equation ( h  = 1) 

of a spin with (large) anisotropy along the z axis. Here S,, S, and S, are dimensionless 
spin operators with commutators 

[ S x ,  S y l  = i s ,  (1.2) 
and cyclic, and y >  0. If h = 1, the limit S +  00 makes no sense in (1.1) as it stands 
because the first term on the right is quadratic in S whereas the second one is linear. 
The problem becomes well defined by multiplying (1.1) by y, 

d* i y- = (- y ’ s l -  ayS,) + = H+ 
d t  (1.3) 

and considering the limit 

s+co Y + O  yS =constant. ( 1.4) 
For the Hamiltonian (1.3), a tunnelling region appears when the anisotropy - y 2 $  

dominates the tunnelling term -ayS,. In fact, as CY + 0, the decay rate for the ground 
state Eo= - y 2 S 2  has been found to be given by (van Hemmen and Suto 1986a, b) 

In contrast to the particle case, we have a logarithmic dependence upon CY. 
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The simple formula (1.5) gives roughly the correct order of magnitude. In this 
paper we derive more accurate results for all pairwise nearly degenerate energy levels 

E M = -  y 2 M 2  M = * S ,  * ( S - 1 ) .  . . .  (1.6) 

We obtain 

with 

+(2S+l) log[y(S+;+M)]  

- ( S  + $ - M )  l0g(y2[ ( S  + i)2 - M 2 ] }  M>O. (1.8) 

The formula (1.7) gives the correct level splittings A E M  up to an error on the per cent 
level for S 2 3, M a S/3, say (see tables 1 and 2). In addition, we obtain the correction 
0 ( a 2 )  to the absolute energies (1.6) 

E M -  - - y 2 M 2 - $ [ ( y )  s+; +1].  
(1.9) 

The method we use was developed long ago (Scharf 1974,1975) for another problem 
of large spin, namely the Dicke maser model. It runs as follows. There is an exact 
correspondence between the spin problem (1.3) and a quantum mechanical particle 
problem with one degree of freedom (0 2). The limit y + 0 is just the semiclassical 
limit of this problem. The spectrum can therefore be calculated by the W K B  

method ( 0  3). 
A completely different approach to the level splitting, an instanton technique, has 

been advocated by Enz and Schilling (1986). See also Vourdas and Bishop (1985) and 
references quoted therein. 

Hamiltonians of the form (1.3) are widely used to model anisotropies in spin glasses 
or other magnetic materials. At low temperatures, thermal activation is negligible and 
tunnelling remains as the only mechanism for the spins to relax to equilibrium. 

2. Mapping onto a particle problem 

The Hamiltonian (1.3) has the following two conserved quantities: 

[ H, S 2 ]  = 0 (2.1) 

[ K  C2l= 0 (2.2) 

where 

Cz = exp(irrS,) (2.3) 

is a rotation through rr about the x axis. In the standard spin basis IS, M )  we have 

HIS, M) = - y2M2/S, M )  - $ a y [ (  S + 1 + M ) ( S  - M)]”‘ lS ,  M + 1) 

- tay[ (S+M)(S+l-M)]”ZJS,  M-1) .  (2.4) 
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To get rid of the square root in (2.4) we transform the basis IS, M )  as follows: 

f ' = ( S + M  2s )-i'2iS, M )  ( 2 . 5 )  

and get 

H f M  =-Y2M2fM - f a ( s - M ) f M t I - ~ a ( s + M ) f M - , .  (2.6) 

For the eigenvector 

we then obtain the eigenvalue equation 

The equation (2.7) is equivalent to 

- y 2 M 2 e M  - ~ ( Y Y ( S - M + ~ ) ~ M - I - ~ ( Y ~ ( S +  M + l ) e M + , = E e ,  M = - S , .  . . ,+S  
(2 .8 )  

where 

e-s-l = 0 = e,,, . 
This automatically implies e-s -2  = es+2 = 0, etc. 

We now introduce the characteristic function 

s 
f ( x ) =  (2.9) 

M = - S  

Multiplying (2 .8 )  by x M  and summing over M ,  we get a second-order differential 
equation for f 

- y 2 x 2 f " +  (fay.x2 - y 2 x  -4ay ) f '  - f a y S ( x  + x - ' ) f =  Ef: (2.10) 

This equation can be transformed by a product ansatz into a Schrodinger form. There 
are various ways to d o  so. A unique transformation is selected by the requirement 
that the C2 symmetry ( 2 . 2 )  is respected. This is very important for what follows. The 
C, transformation (2.3) means M + - M,  which corresponds t c  the inversion 

x +  l / x  ( 2 . 1 1 )  

in f ( x )  defined by (2.9). With the product ansatz 

(2 .12 )  

we obtain the inversion-symmetric equation 

- y2 (x2y"+ X Y ' )  + V ( X ) ~  E 2ty = Ey (2 .13 )  

with the potential 

V ( x )  = ~ a 2 ( x 2 +  x-2-2)  - i a y ( S + t ) ( x  + x - ' ) .  (2.14) 
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The resulting Hamiltonian X is Hermitian on the Hilbert space L:,,(0,03) with 
scalar product 

(2.15) 

It is possible to proceed to an ordinary L2-space on the whole real line (-CO, M) by 
using the transformation 

x = e z  (2.16) 

of the independent variable. The resulting equation 

- y 2 ~ + [ & ' s i n h 2 ( z ) - a y ( S + 4 )  d'y cosh(z)]y(z)= E y ( z )  (2.17) 
dz 

is invariant under reflection z + -2. This formulation of the problem, however, is not 
convenient for the computatioris in the next section because the potential in (2.17) is 
transcendental instead of algebraic as in (2.14). 

In the limit S+m, y + O ,  yS=constant, the potential V(x) in (2.14) becomes 
independent of y, 

V(x) = & a 2 ( x  + x-')2 - a  a 2  -$a(T(x + x-1) (2.18) 

with 

U =  y ( S + f ) .  (2.19) 

Furthermore, y enters in (2.13) and (2.17) in the same way as Planck's constant h in 
ordinary quantum mechanics. For this reason we can apply the WKB method (see, for 
example, Landau and Lifshitz (.1965)). Maintaining the f in (2.19), the results obtained 
are accurate even for small S, like S = 3  (see table 1). The potential (2.18) is shown 
in figure 1. For u>>a there are two valleys, separated by a large barrier. This is the 
tunnelling region. For energies E - --IT', the tunnelling takes place between the two 
classical allowed regions 

O < x o < x , < l  and l < x , < x ,  (2.20) 

Table 1. Ground-state energies Eo and level splittings A€o of the Hamiltonian H = -Sf - S, 
for S = 3 ,  4 , . . . ,  11; cf (1.7), (1.8) and (1.10). 

S 

3 
4 
5 
6 
7 
8 
9 

10 
11 

- 

~ 

I €01 I Eo/ A Eo 
numerical analytical numerical 

9.3015 
16.2860 
25.2779 
36.2728 
49.2693 
64.2667 
81.2647 

100.2632 
121.2619 

9.2951 
16.2832 
25.2763 
36.2717 
49.2685 
64.2661 
8 1.2643 

100.2628 
12 1.2616 

0.144 x 
0.118X 
0.518 X 

0.143 X 

0.268 x 
0.366 x lo-' '  
0.379 x lo-'* 
0.309 x 
0.203 X 

A EO 
analytical 

0.15ox 
0.118 X 

0 . 1 3 9 ~  
0.259 x 
0.352 x 
0.363 x lo-'' 
0.295 x 
0.193 x 

0.51 1 x 1 0 - ~  
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I 
Figure 1. Double well potential V ( x )  for (Y = 1 ,  v = y (  S +f) = 3 .  xo < x, < 1 < x2 < xj  are 
the classical turning points for energy E. Two different scales have been chosen for X B  1 ,  
in order to make the two valleys visible. 

where the classical turning points are given by 

ff 
x --(a-Q) 

x1 =- (a+ Q)<< 1 

x2 = - ( a  - Q )  = - 

X3 = - ( (+ + Q )  = - 

‘-41EI 

a 

4 1 ~ 1  

4 1 
a XI 

4 1 
ff XO 

with 

3. WKB treatment 

Introducing the WKB ansatz 

into (2.13) we obtain 

x2S2  - i yx2S”-  i yxS’ = E - V, 

We expand 

Y s = S0+T s, + O( y2) 
1 

(2.21) 

(2.22) 

(2.23) 

(3.3) 
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and arrive in lowest order O( 1) at the classical Hamilton-Jacobi equation 

X’SA’ = E - V (3.4) 

with the solution 

dx‘ 
S,(x)= ( E  - V(X’))’’’- 

x’ . 

The equation of order y for SI, 

s; 1 S’----- 
2s; 2x I -  

(3.5) 

gives 

S,(x)  = -t log(E - V(x)/+constant. (3.7) 

By the standard connection argument, we obtain the wavefunction in the classically 
allowed region xo < x < x1 

y ( x ) = C ( E -  

The Bohr-Sommerfeld 
equation 

(3.8) 

eigenvalues E, are determined by the transcendental 

(3.9) 

The resulting elliptic integral 

dx’ 
[ - & a 2 ~ ’ 4 + f a a ~ ’ 3  + ( E ,  +$c~’)x’~  + ~(YCTX’ -+(Y’]’’’ - 

X” 
(3.10) 

need not be computed as it stands, because we have by (2.21) 

on the average. The leading-order integral is elementary 1: ( E , ~ ’ ~ + ~ a u x ’ - & a ~ ) ~ / ~ - -  dx’ 
x,2 -b-lEn11’21T. 

It follows from (3.9) that 

I En11’2 = u - ( n  +f) y = ( S  - n )  y. 

Putting 

S - n = M  

we get the unperturbed spin eigenvalues 

IEMi = y 2 M 2 .  

(3.11) 

(3.12) 

(3.13) 

( 3 . 1 4 ~ )  

(3.146) 
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The corrections to them are of order a 2  and come from the cubic (&ax’3) and quadratic 
( fa2xf2)  terms in (3.10). For the lower part of the spectrum we may approximate x’ 
by its mean value (3.11) in 

The resulting modification 

leads to the corrected eigenvalues 

(3.15) 

As can be seen from tables 1 and 2 there is good agreement with numerical results 
except for the highest energies. 

Table 2. Energy levels E ,  and level splittings P E ,  of the Hamiltonian H = -5’; - S, for 
S=10,  M = 1 0 , 9  , . . . ,  3; cf (1.7), (1.8) and (1.10). 

I E W l  lE,I E ,  A E W  
M numerical analytical numerical analytical 

100.2632 
81.2957 
64.3414 
49.4082 
36.5122 
25.6884 
17.02 
10.04 

100.2628 
81.2951 
64.3403 
49.4063 
36.5078 
25.6763 
16.99 
10.66 

0.309 x 

0.554 x 
0.178 x 
0.248 x 
0.141 x 
0.276 x IO-’ 

0.718 x io- ’ ’  

0.974 

0.295 x l o - ”  
0.722 x lo- ’ ’  
0.569 x 
0.187 x 
0.269 x 
0.164X 
0.379 x l o - ’  
2.75 

Now we turn to tunnelling. We adapt a method of Landau and Lifshitz (1965) to 

-$(x2+”+x+’)+ V(X)J, = E+. (3.16) 

The eigenfunctions of the two nearly degenerate states in the double well can be 
expressed as 

(3.17) 

(3.18) 

the inversion-symmetric Hamiltonian (2.13) 

+,(XI = 2-’”[+0(x) + +o(x-’)l 
+2(x) = 2-”2[40(x) - +o(X-’ ) l  

where $ J ~ ( X )  is a real eigenfunction for a single well in the interval [0, 11, say, 

-Y2(x24; + x+b) + V(X)40 = Eo40 O < X S l .  (3.19) 
We normalise CL,, according to 

(3.20) 

Multiplying the eigenvalue equation for 

-y2(x2CLY+x41)+ V(X)CLI = EI+I 
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by Go and (3.19) by subtracting and integrating from 0 to 1, we get 

(3.21) 

because $,(x-’) in (3.17) is exponentially small in the interval O <  x =s 1. Simplifying 
the left-hand side of (3.21) by partial integration, we arrive at 

2-1’2(EI - Eo) = -Y2[X(JIo*L: - *,*b)1(1) 
(3.22) 1 / 2  2 = 2  Y * o ( l ) * b ( l )  

or simply 

Proceeding in the same way with IL2 of (3.18), we obtain 

which leads to the splitting of the eigenvalues 
A E  = E2 - El = -4y2+,( I)+;( 1). 

El -Eo = 2Y2*O(1)*b(l). 

E 2 - E o =  -2Y2*o(l)*b(l) 

(3.23) 
Here we need the WKB wavefunction in the forbidden region x1 < x s 1 

(3.24) 

The normalisation constant is determined by matching to (3.8). In the normalisation 
integral the contribution of the forbidden region can be neglected compared with the 
contribution of the allowed region (3.8). For small yy cos2(. . .) may on the average 
be approximated by f, so that 

Here we can again use the quadratic approximation under the square root which gives 

(3.25) 

For the derivative in (3.23), we have to leading order in y, only to differentiate the 
exponent in (3.24). This leads to 

2 
A E  =- ylEI’” exp J (3.26) 

7T 

with 

(3.27) 

Here we cannot avoid computing the elliptic integral. This is done in the appendix. 
The result is 

(3.28) 
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Substituting 

I J ! ? M \  = y2M2 U =  y ( S + i )  

we have the following final result for the level splitting (3.26): 

2 
AE,=-yMexpJ 

7T 

with 

J = - 2 M  log - y 2 M 2  -1 + ( 2 S + 1  [ ( :  ) I  
M > O  (3.29) 

- ( S  + f - M )  log{ y 2 [ ( S  + f)’ - M’]} (3.30) 

as announced in § 1. 
We have compared the predictions of (3.29) and (3.30) with numerical calculations 

for S = 3,4, .  . , , 11. Even for a = 1 the agreement is remarkably good (tables 1 and 
2), despite the fact that there is a rapid exponential variation of AEM with M. Only 
the highest eigenvalues IMI < S / 3 ,  say, are inaccurate, because there is no longer any 
tunnelling barrier. 
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Appendix 

We decompose J in (3.27) as follows: 

2 
Y 

J = --(Jl+ J 2 +  J3+ J 4 +  J5)  

x2 dx 
x( R(  x))~’’ 

J2 = -&U lX, 
’2 dx 

x’(R(x))”’ 

x2 x d x  jx, (R(x))’l2 
J --I 

4 -  
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with 

R ( x )  = & c x ~ x ~ - ~ c Y u x ~ - ( E  + ~ a 2 ) ~ 2 - ~ ~ ~ ~ + & a 2  

= ( ~ a ) 2 ( X 3 - x ) ( X 2 - X ) ( X ~ - X 1 ) ( X - X o ) .  

We have 

J2 = J4 J3 = Js 
by inversion symmetry. JI is an  elliptic integral of the first kind 

J ,  = / E I ’ / 2 K ( . k ’ 2 )  (A81 
where 

kt2 = 1 - k 2  

a2 u*-lEl k 2 = - -  
<( 1 .  (A91 4 E’ 

The integrals J2 and J3 can be expressed by complete elliptic integrals of the first 
K ( k ” ) ,  second E ( k ” )  and third kind II(P2, k’2 )  (Byrd and Friedman 1971): 

(‘410) J2 = - ~ g [ x 3 K (  k ’2 )  + ( x 2 - x 3 ) n ( P 2 ,  k r 2 ) ]  

P:K + 2 p : ( p 2  - p:)n 

1 + ( 2 P 2 k ’ 2 + 2 p 2 - p 4 - 3 k ’ 2 ) I I ]  

with 

II can be computed in terms of incomplete integrals of the first F and second kind E 
(Byrd and  Friedman 1971): 

n(p2, k’*) = K ( k”)  + P 
[ ( 1 - P’ )  (k‘2 - P 2 ) ] ” 2  

x ( K (  k ” ) E (  6, k ’ )  - E (  k’*)F(S,  k ’ ) )  

with 
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For k‘ near 1, the following approximate expressions are valid (Byrd and Friedman 
1971): 

4 
K(k’’)=log- 

k 

E(k‘*) = 1 

1 +sin 6 
F (  6, k’) = log ~ 

cos 6 

E (6,  k’) = sin 6. 

Putting everything together we obtain 

J , + 2 J 2 + 2 J , = I E I ” 2 { l ~ g [ ( 8 / a ) l E l ] - 1 }  

- (+ log((++ /El”*) + ( U  - [El”2) - lE1)’’2. 

This result is used in (3.28) in the main text. 
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